
Constructing Material Interfaces
From Data Sets With

Volume-Fraction Information

Kathleen S. Bonnell∗ Daniel R. Schikore† Kenneth I. Joy∗ Mark Duchaineau‡ Bernd Hamann∗

Abstract

We present a new algorithm for material boundary interface recon-
struction from data sets containing volume fractions. We transform
the reconstruction problem to a problem that analyzes the dual data
set, where each vertex in the dual mesh has an associated barycen-
tric coordinate tuple that represents the fraction of each material
present. After constructing the dual tetrahedral mesh from the orig-
inal mesh, we construct material boundaries by mapping a tetrahe-
dron into barycentric space and calculating the intersections with
Voronoi cells in barycentric space. These intersections are mapped
back to the original physical space and triangulated to form the
boundary surface approximation. This algorithm can be applied
to any grid structure and can treat any number of materials per ele-
ment/vertex.

Keywords: Eulerian flow, material boundary surface, barycentric
coordinates, volume fraction, Voronoi diagram.

1 INTRODUCTION

There are numerous instances in which it is necessary to recon-
struct or track the boundary surfaces (or “interfaces”) between mul-
tiple materials that commonly result from numerical simulations.
Multi-fluid Eulerian hydrodynamics calculations require geometric
approximations of fluid interfaces to form the equations of motion
to advance these interfaces correctly over time. In typical simula-
tions, the grid cells contain fractional volumetric information for
each of the materials. Each cellC of a gridS has an associated tu-
ple (α1, α2, ..., αm) that represents the portions of each ofm ma-
terials in the cell, i.e., αi represents the fractional part of material
i. We assume thatα1 + α2 + · · · + αm = 1. Considerations
in approacing this problem involve finding a (crack-free) piecewise
two-manifold separating surface approximating the boundary sur-
faces between the various materials, as well as spatial and temporal
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Figure 1: Grid and dual grid: The original grid (dashed lines) is
replaced by a dual grid (solid lines), obtained by connecting the
centers of the original elements. Barycentric coordinates are asso-
ciated with each vertex of the dual grid. The barycentric coordinates
represent the fractions of each material present in the original grid
cells.

smoothness.
To solve this problem, we consider the dual data set constructed

from the given data set, as shown in Figure 1. In the dual grid,
each cell is represented by a point (typically the center of the
cell), and each point is associated with tuple(α1, α2, ..., αm),
wherem is the number of materials present in the data set and
α1 + α2 + · · · + αm = 1. Thus, the boundary surface recon-
struction problem reduces to constructing the material interfaces for
a grid where each vertex has an associated barycentric coordinate
representing the fractional parts of each material at the vertex. We
use this “barycentric coordinate field” to approximate the material
boundary surfaces.

Important applications of this problem occur for all grid types,
e.g., when the data points lie on a rectilinear grid, curvilinear grid,
or an unstructured grid. We therefore develop a solution strategy
that is tailored to tetrahedral grids, as all other types of grid struc-
tures can be converted to this form, as demonstrated by Nielson
[1]. In the case of rectilinear, curvilinear, or even hybrid polyhedral
meshes, we preprocess a given grid by subdividing each polyhe-
dral cell into tetrahedra, and apply our algorithm to the resulting
tetrahedral grid.

If we have a data set containingm materials, we process each
tetrahedral cell of the grid and map our tetrahedral elements into an
m simplex representingm-dimensional barycentric space. Next,
we calculate intersections with the edges ofVoronoi cells[2] in
them-simplex. These Voronoi cells represent regions, where one
material “dominates” the other materials locally. We map these
intersections back to the original space and triangulate the resulting
points to obtain the boundary.

Section 2 describes previous work dealing with material bound-



ary surfaces. Section 3 describes the two-material case, which can
be viewed as a simple extension of a marching cubes/tetrahedra al-
gorithm [3, 4, 5]. Section 4 describes the three-material case. Here,
material boundaries are calculated in barycentric space (a triangle)
and mapped back to the original data set. The generalm-material
case is described in Section 5. In this case, intersections are calcu-
lated in a barycentricm-simplex and mapped back to the tetrahedra
in the data set. Implementation details are described in Section 6.
Section 7 presents results for various data sets, and Section 8 pro-
vides conclusions and describes possible future work.

2 RELATED WORK

The bulk of research in material interface reconstruction has been
conducted in computational fluid dynamics (CFD) and hydrody-
namics, where researchers are concerned with the movement of ma-
terial boundaries during a simulation.

The Simple Line Interface Calculation (SLIC) algorithm by Noh
and Woodward [6] is one of the earliest, describing a method for ge-
ometric approximation of fluid interfaces. Their algorithm is used
in conjunction with hydrodynamics simulations to track the advec-
tion of fluids. Working only with two-dimensional grids, their algo-
rithm produces an interface consisting of line segments, constructed
parallel or perpendicular to a coordinate axis. Multi-fluid cells can
be handled by grouping fluids together, calculating the interface be-
tween the groups, subdividing the groups, and iterating this process
until interfaces are constructed. Since this algorithm only uses line
segments that are parallel to the coordinate axes, the resulting inter-
faces are generally discontinuous.

The algorithm of Youngs [7] also operates on two-dimensional
grids and uses line segments to approximate interfaces. In this al-
gorithm, the line segments are not necessarily perpendicular or par-
allel to a coordinate axis. Instead, the neighbor cells of a cellC
are used to determine the slope of a line segment approximating an
interface inC. The exact location of the line segment is adjusted
to preserve the volume fractions in a cell. Multiple materials are
treated by grouping materials and determining interfaces on a two-
material basis. Again, the interfaces produced by this method are
generally discontinuous.

The algorithm of Gueffier [8] requires an estimate of the nor-
mal vector to the interface in order to reconstruct the interface. He
utilizes finite differencing or least-squares methods to approximate
this normal and adjusts a line segment perpendicular to this nor-
mal to generate a boundary surface in a cell. The surface is gener-
ally discontinuous, and it is unclear how multiple materials can be
handled, or how one could generalize the algorithm to the case of
three-dimensional grids.

Pilliod and Puckett [9] compare various volume-of-fluid in-
terface reconstruction algorithms, including SLIC, noting differ-
ences in the surfaces reconstructed and demonstrating first-order or
second-order accuracy. Their goal is to reproduce a linear interface.

Nielson and Franke [10] have presented a method for calculating
a separating surface in an unstructured grid where each vertex of the
grid is associated with one of several possible classes. Their method
generalizes the marching cubes/tetrahedra algorithm, but instead of
using a strict binary classification of vertices, it allows any num-
ber of classes. Edges in tetrahedral grids whose endpoints have
different classifications are intersected by the separating surface.
Similarly, the faces of a tetrahedron whose three vertices are classi-
fied differently, are assumed to be intersected by the surface in the
middle of the face. When all four vertices of a tetrahedron have dif-
ferent classifications, the boundary surface intersects in the interior
of the tetrahedron. The resulting “mid-edge”, “mid-face” and “mid-
tetrahedron” intersections are triangulated to form the surface.

Our algorithm generalizes the above schemes. We utilize a grid
that has a barycentric coordinate associated with each vertex. This

allows us to generate material boundaries directly from the inter-
sections calculated in “barycentric space.” Our algorithm handles
multiple materials and can reconstruct layers and “Y-type” (non-
manifold) interfaces with equal ease. Our algorithm does not rely
on application-specific knowledge of hydrodynamics or other sim-
ulation codes, but solves the problem from a purely mathematical
viewpoint.

3 THE TWO-MATERIAL CASE

Consider an unstructured two-dimensional gridS of triangles,
where each vertex ofS has an associated barycentric coordinate
α = (α1, α2, ..., αn). Let T be a triangle ofS, and assume that
there are two distinct indicesi1 and i2, such that for each vertex
v of T , its associated barycentric coordinate has the property that
αi1 + αi2 = 1, andαi = 0 wheni 6= i1, i2. Then we assume that
exactly two materials are contained in the triangleT .

In this case, we define the material boundary to be the set of
points whereαi1 = αi2 = 1

2
.1 Using linear interpolation, we

can find the point on each edge whereαi1 = αi2 = 1
2
, and by

computing these points on all edges ofT , we can use a contouring
algorithm to draw the boundary contour.

For unstructured three-dimensional grids of tetrahedra, the two-
material case reduces to an isosurface calculation, determining the
isosurfaceα1 = 1

2
, which can easily be implemented by a marching

tetrahedra method [5].

4 THE THREE-MATERIAL CASE

Let T be a triangle ofS, and assume that there are three distinct
indicesi1, i2, andi3, such that for each vertexv of T , its associated
barycentric coordinate has the property thatαi1 + αi2 + αi3 = 1,
and αi = 0 when i 6= i1, i2, i3. In this case, we assume that
potentially three materials are contained in the triangleT .

Without loss of generality, we will assume thatn = 3, i1 = 1,
i2 = 2, and i3 = 3. Thus, each vertex ofT has an associated
3-tupleα = (α1, α2, α3), whereα1 + α2 + α3 = 1. Here,α1

is the fraction of materialm1, α2 is the fraction ofm2, andα3

is the fraction ofm3, respectively. The coordinate(α1, α2, α3)
lies on the equilateral triangle with vertices(1, 0, 0), (0, 1, 0), and
(0, 0, 1), as shown in Figure 2. We partition this triangle into three
regions, defined by theVoronoi cellsV1, V2, andV3, see Figure 3.
The Voronoi cellsVj are bounded by the edges of the triangle, and
the three line segmentsl12, l13, andl23, whereα1 = α2 andα3 ≤
1
3
, α1 = α3 andα2 ≤ 1

3
, or α2 = α3 andα1 ≤ 1

3
, respectively.

For two-dimensional triangular grids, we map the associated
barycentric coordinates of a triangleT onto a triangleT ′ in
barycentric space. We use the intersections of the edges ofT ′ with
the edges of the Voronoi cells in the barycentric triangle to define
material interfaces inT ′. These intersections are then mapped back
to points inT , using the same linear parameters to determine the
intersections on the edges ofT . There are three cases:

• The triangleT ′ does not intersectl12, l13, or l23. In this case,
we assume that no material boundary exists inT .

• The triangleT ′ intersects at least one of the line segmentsl12,
l13, or l23, and the centerc of the barycentric triangle does not
lie insideT ′. In this case, we calculate intersections on the
edges ofT , corresponding to the intersections ofT ′ with l12,
l13, and l23, respectively. (The triangleT ′ may intersect at
most two of these lines.) The material boundary line segments

1The rationale behind this decision is that an infinitesimally small cell
whose center is on the boundary will contain approximately half of each
material.
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Figure 2: Domain triangle in barycentricm1m2m3-space.
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Figure 3: Partitioning the barycentric triangle into regions. The
point c is the point( 1

3
, 1

3
, 1

3
), the center of the triangle.l12, l13,

andl23 bound the Voronoi cellsVj in the interior of the triangle.
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Figure 4: Mapping intersections from barycentric space to the tri-
angleT : The images on the left show the triangleT ′ in barycentric
space, and the images on the right show the material boundary line
segments mapped from barycentric space to the original triangleT
in physical space.
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Figure 5: Examples of material boundary surface determination for
tetrahedral grids.

insideT are then defined as the line segments that connect
the corresponding edge intersections inT . Figures 4a and 4c
illustrate these cases.

• The pointc lies insideT ′. In this case, we calculate three edge
intersections forT , corresponding to the intersections ofT ′

with l12, l13, andl23, respectively, and a point in the interior
of T , corresponding to the pointc in T ′. The material bound-
ary line segments are defined as the three lines connecting the
edge intersections and the face point. Figure 4b illustrates this
case.

If one of theαi values is zero for each of the three vertices of a
triangle, then all points map to an edge of the barycentric triangle.
Thus, the situation reduces to the two-material case. If only one
material is present at all three vertices, then no intersections are
calculated.

For three-dimensional tetrahedral grids, we use the associated
barycentric values of the vertices of each face of a tetrahedron
T and map the tetrahedron to an imageT ′ of T in barycentric
space. Intersections are calculated separately for each face ofT ′

and mapped back toT . There are three cases:

• No edge of the tetrahedronT ′ intersects the line segments
l12, l13, or l23. In this case, no material boundaries exist in
the tetrahedronT .

• The edges of the tetrahedronT ′ intersect at least one of the
line segmentsl12, l13, or l23, but the point( 1

3
, 1

3
, 1

3
), the cen-

ter of the barycentric triangle, does not lie inside any of the
faces ofT ′. In this case, we calculate the intersection line
segments for each triangular face ofT and determine a trian-
gulation from these segments by following the marching tetra-
hedra algorithm [5]. Figures 5a and 5b illustrate the possible
cases.

(a) (b)

Figure 6: Voronoi cell decomposition in the four-material case: The
figure illustrates a three-dimensional projection of the barycentric
tetrahedron from four-dimensional space. The tetrahedron is seg-
mented into four Voronoi cells in (a). In (b), a tetrahedron, mapped
from physical space, is shown inside the barycentric tetrahedron.

• The center point of the barycentric triangle lies inside two
faces ofT ′. In this case, two faces have a single mate-
rial boundary line segment connecting two edge intersection
points, and two faces have three material boundary line seg-
ments meeting in the interior of two faces. We map the inter-
sections back to the tetrahedronT , using linear interpolation.
Using the material boundary line segments for each face, and
the line segment connecting the two points in the interior of
two faces ofT , we can determine a valid triangulation of the
boundary surface. Figure 5c illustrates this case.

5 THE GENERAL CASE

In the case of four materials, we can assume that each vertex of a
triangleT has an associated barycentric coordinate given by a four-
tupleα = (α1, α2, α3, α4), whereα1 + α2 + α3 + α4 = 1, and
αi ≥ 0. By considering the tetrahedron having vertices(1, 0, 0, 0),
(0, 1, 0, 0), (0, 0, 1, 0), and(0, 0, 0, 1) in four-dimensional space,
we can construct a partition of this tetrahedron similar to the three-
material case. Again, we use the Voronoi cells for the decomposi-
tion of the barycentric tetrahedron. The boundaries of these cells
include parts of the faces of the tetrahedron and six planar pieces,
which are defined byα1 = α2, α1 = α3, α1 = α4, α2 = α3,
α2 = α4, andα3 = α4. This Voronoi partition is shown in Fig-
ure 6a.

For two-dimensional grids, we map the four-dimensional
barycentric coordinates associated with the vertices of a triangle
T into a triangleT ′ in barycentric space. We use a clipping al-
gorithm to generate the intersections in the triangleT ′, clipping
against the six planes defining the boundaries of the Voronoi cells
of the barycentric tetrahedron. The tetrahedron is stored in a binary
space partitioning (BSP) tree, and we apply the clipping algorithm
described by Samet [11] . Once the intersections are determined by
the clipping algorithm, the material boundary line segments can be
determined for the triangleT .

For three-dimensional tetrahedral grids, we use a similar clipping
algorithm for the imageT ′ of a tetrahedronT . This enables us to
calculate the boundary surfaces inside the tetrahedronT ′, which we
then map back to the tetrahedronT in physical space.

In the general case ofm materials, we map a tetrahedronT to
a tetrahedronT ′ in an m-simplex in barycentric space. Them-
simplex is partitioned into Voronoi cells whose boundaries consist
of the faces of them-simplex and the

(
m
2

)
hyperplanes defined by



αi = αj , wherei 6= j and1 ≤ i, j ≤ m. The material bound-
aries forT ′ are calculated by using a clipping algorithm and then
are mapped back to physical space to form the material boundaries
insideT . We utilize a BSP algorithm to perform the clipping.

6 DISCUSSION

The algorithm runs in effectively the same time as does the march-
ing cubes/tetrahedra algorithm. We traverse the cells of a grid and
calculate, for each cell, a polygonal representation of the material
boundaries. Most grid cells in common examples contain only one
material, and boundaries do not exist in these cells.

We note that the algorithm can miss material boundaries in tetra-
hedra. In any isosurface-type algorithm, it is possible for the iso-
surface to enter a tetrahedron, but only intersect one edge. In this
case, the algorithm cannot detect the material boundary from only
the information at the vertices.

In the three-material case, we have chosen the pointc =
( 1
3
, 1

3
, 1

3
) as the “center” of the barycentric triangle. This assumes

that there are three distinct sectors in the barycentric triangle, sub-
dividing the triangle in a “Y” fashion, and that a cell of infinites-
imally small size contains about one-third of each material in the
cell. This is not always the case. For example, consider a “T inter-
section,” where any small cell would contain one-half of one mate-
rial and one-quarter of the other two materials. We can adjust our
segmentation of the barycentric triangle so that the pointc is at an
arbitrary location in the triangle, and the edges that determine the
intersections can be adjusted appropriately. This can be done by
sampling in a larger neighborhood of a specific cell to understand
how to weigh the materials about the “Y point.” This is a global
process: neighboring cells must agree with the change in order to
maintain continuity.

In the four-material case, the center of the tetrahedron can also
be adjusted. However, this implies that the “center” vertices on the
faces must also be adjusted so that the separating surfaces remain
planar. In them-material case, similar considerations also hold
when adjusting the center of them-simplex.

Our algorithm can be considered as a direct generalization of the
Nielson-Franke algorithm [10]. Each vertex of a gridS has an
associated barycentric coordinateα = (α1, α2, ..., αm), and by re-
stricting material fractions such that exactly oneαi = 1, we obtain
the case where each vertex is only associated with one material.
In this case, our algorithm produces the results produced by the
Nielson-Franke algorithm.

7 RESULTS

We have implemented this algorithm and used it to generate ma-
terial interfaces for a variety of data sets. Figure 7 illustrates the
material interfaces for a data set consisting of three materials. The
boundary of the region containing material 1 has a spherical shape,
and the other two material regions are formed as concentric layers
around material 1 – forming two material interfaces. The origi-
nal grid is rectilinear-hexahedral consisting of64 × 64 × 64 cells.
We constructed the dual grid, and then split each dual cell into six
tetrahedra, see Nielson [1], creating 1,572,864 tetrahedra. Approx-
imately 30% of the tetrahedra containing the material boundaries
contain two boundary surfaces.

Figure 8 shows the material interfaces for a three-material data
set of a simulation of a ball striking a plate consisting of two mate-
rials. The original data set is rectilinear-hexahedral and has a reso-
lution of 53 × 23 × 23 cells. Again, we created the dual grid, and
split each dual cell into six tetrahedra, creating 28,037 tetrahedra.
The data set is time-varying and four time-steps are shown.

Figure 7: Boundary surfaces of two materials formed as two con-
centric spherical “shells”.

Figure 8: Simulation of a projectile striking a thick plate. The pic-
ture in the upper-left corner shows the initial configuration, and the
following sequence of pictures shows the boundary surfaces as the
projectile penetrates the two-material plate.



(a) (b)

Figure 9: Brain data set. The material boundary surfaces are shown
in red, green and yellow. The polygons forming the material bound-
aries are clipped to show the interior of the data set. Two views of
the material boundary surfaces are shown in (a) and (b).

Figure 9 illustrates the material interfaces for a human brain data
set. The original grid is rectilinear-hexahedral containing256 ×
256 × 124 cells. Each cell contains a probability tuple giving the
probability that each material is present at the point. The three types
of material are white-matter, grey-matter, and ’other’. The resulting
dual data set contains over eight million tetrahedra.

8 CONCLUSIONS

We have presented a new algorithm for material boundary surface
reconstruction from data sets containing material volume-fraction
information. We transform a given grid to a dual grid, where each
vertex has an associated barycentric coordinate that represents the
fractions of each material present. After tetrahedrizing the dual
grid, we construct the material interfaces by mapping each tetrahe-
dron to barycentric space, calculating the intersections with Voronoi
cells in barycentric space. These intersection points are mapped
back to physical space and triangulated to form the resulting bound-
ary surface.

The algorithm can treat any number of materials per cell, and
since it is based on tetrahedral grids, it can be used with any grid
structure.

Concerning future work, we would like to insert a “measure-and-
adjust” feature to the algorithm. Once an initial boundary surface
approximation is calculated, we calculate (new) volume fractions
for cells directly from this boundary surface. This will enable us
to calculate the difference between the original volume fractions
and the volume fractions as implied by our initial boundary surface
approximation. It is then possible to adjust our material interfaces
to minimize the volume fraction deviations.

We also plan to extend this algorithm to multidimensional grids.
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Figure 7: Boundary surfaces of two materials formed as two concentric spherical “shells”.

Figure 8: Simulation of a projectile striking a thick plate. The picture in the upper-left corner shows the initial configuration, and the following
sequence of pictures shows the boundary surfaces as the projectile penetrates the two-material plate.

(a) (b)

Figure 9: Brain data set. The material boundary surfaces are shown in red, green and yellow. The polygons forming the material boundaries
are clipped to show the interior of the data set. Two views of the material boundary surfaces are shown in (a) and (b).


